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Distribution of complex phase velocities for
small disturbances to pipe Poiseuille flow
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It is numerically known that normal modes for small disturbances to pipe Poiseuille
flow have complex phase velocities c which form a Y-shaped set of discrete points
in the fourth quadrant, when the Reynolds number R is large. In this paper, the
eigenvalue problem of determining c for axisymmetric torsional disturbances is treated,
and the Y-shaped distribution of these c is studied analytically (with a little aid from
numerics) by using some asymptotic forms of a Whittaker function. As a result,
a Y-shaped contour on which eigenvalues c are approximately located is obtained,
independent of the wavenumber α and R, from simple equations which contain
elementary functions only. Naturally, the location of each individual c depends on
α and R. How it changes on the contour when large R is becoming still larger
is explained. Several approximate values of c on the contour are compared with c

computed by Schmid & Henningson (1994), and their agreement is seen to be good.
Furthermore, the limit Re c → 2/3 as Im c → −∞ is rigorously proved when R is
fixed at an arbitrary number, which is not required to be large. This limit is shown
to be true also with eigenvalues c for axisymmetric meridional disturbances. The
alternate distribution of c for torsional and meridional disturbances on a branch of
the Y-shaped contour is explained.

1. Introduction
The stability of Poiseuille flow in a circular pipe is a problem with a long history.

The theoretical study of its dependence on the Reynolds number R was started
by Sexl (1927). After that, many researchers investigated the behaviour of small
disturbances to pipe flow from various theoretical viewpoints and deduced the
linear stability at every value of R (see Drazin & Reid 1981 and the references
therein). Consequently, researchers’ interests moved into nonlinear effects of non-
small disturbances. However, the linear stability problem has not been completely
solved yet. In fact, since 1990s, the importance of careful studies on linear effects
of small disturbances has been realized again in connection with pseudospectra of
the pipe-flow version of the Orr–Sommerfeld operator (see Trefethen, Trefethen &
Schmid 1999; Schmid & Henningson 2001 and the references therein).

Let us consider small axisymmetric disturbances for which normal modes have the
factor eiα(x−ct) (α > 0, c ∈ �) at time t in the cylindrical coordinate system (r, θ, x)
with the x-axis parallel to the pipe Poiseuille flow (0<r < 1). The wavenumber α is
arbitrarily fixed throughout this paper. It is known that the complex phase velocities
c, for which cr (:= Re c) ∈ (0, 1) and ci (:= Im c) < 0, are classified into three families
when R is large. The first family consists of c such that c → 1 as R → ∞. It was found
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by Pekeris (1948), and its corresponding normal modes are called ‘centre’ or ‘fast’ or
‘P’ modes. The second family consists of c such that c → 0 as R → ∞. It was found
by Corcos & Sellars (1959), and its corresponding normal modes are called ‘wall’ or
‘slow’ or ‘A’ modes. Corcos & Sellars (1959) analytically studied these two families
in detail in the case of c close to 0 or 1. The third family consists of c such that
cr ≈ 2/3, and each c joins either the first or the second family when R becomes still
larger. It was observed in numerical calculations of Davey & Drazin (1969), Salwen &
Grosch (1972) and O’Sullivan & Breuer (1994), and its corresponding normal modes
are called ‘mean’ or ‘S’ modes. These three families form a Y-shaped set of discrete
points on the c-plane (Davey & Drazin 1969; Schmid & Henningson 1994 (table 1,
n=0), 2001 (p. 506, n= 0)). Interestingly, such Y-shaped structure is retained even
if the axisymmetry of disturbances is broken (O’Sullivan & Breuer 1994; Schmid &
Henningson 1994, 2001; Meseguer & Trefethen 2003).

As Schmid & Henningson (1994, 2001) and Meseguer & Trefethen (2003) pointed
out, numerical calculations of linear effects of small disturbances are error-prone.
Therefore, an analytical check on them is worth having, even if in a restricted case.
Nevertheless, as far as is known, it was only Reid & Ng (2003) who made analytical
investigation of the above three families in the case of c not close to 0 or 1.

The main aim of this paper is to deal with the eigenvalue problem of determining c

for small torsional disturbances with axisymmetry and investigate analytically (with a
little aid from numerics) the distribution of c not necessarily close to 0 or 1. For this,
we make use of asymptotic forms of a Whittaker function (a confluent hypergeometric
function of Whittaker’s) which were derived by Skovgaard (1966). Our main results
are as follows:

1. A Y-shaped contour on which discrete eigenvalues c are approximately located
is obtained by numerical solution of simple equations which contain elementary
functions only and are independent of α and R.

2. The limit cr → 2/3 as ci → −∞ is rigorously proved when R is fixed at an
arbitrary number, which is not required to be large.

3. It is interpreted how each c nearly on the Y-shaped contour moves towards the
real axis when large R becomes still larger.

4. Several approximate values of c on the Y-shaped contour are compared with c

obtained in the numerical calculation of Schmid & Henningson (1994, table 1, n= 0),
and their agreement is seen to be good.
In addition, axisymmetric meridional disturbances are also discussed restricted to the
mean-mode family:

5. The above-mentioned limit, cr → 2/3 as ci → −∞, is shown to be also true with
eigenvalues c for meridional disturbances.

6. It is analytically explained that c for torsional and meridional disturbances are
alternately located on the mean-mode branch of the Y-shaped contour.

The application of a confluent hypergeometric function of Kummer or Whittaker
to the stability analysis of pipe Poiseuille flow was done by Pekeris (1948) and
Sexl & Spielberg (1958). In their times, however, the results of Skovgaard (1966) were
not available. Reid & Ng (2003) dealt with not only torsional but also meridional
disturbances by their own asymptotic analysis, part of which was essentially the same
as of Skovgaard (1966). Although our disturbances are mostly torsional, we study the
distribution of c more specifically than Reid & Ng (2003).

In § 2, the formulation of our problem is given, and the behaviour of torsional
disturbances is described by the Whittaker function. In § 3, the region of c is broken
into three sets and asymptotic forms of the Whittaker function are derived for each
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set by using a Bessel or an Airy function. In § 4, it is shown that the locations of
zeros of the Bessel and the Airy functions account for the Y-shaped structure of
c. The distribution of c for mean modes is discussed, and the limit c → 2/3 − i∞ is
proved in § 5. The distribution of c for wall and centre modes is treated in § 6. The
limit c → 2/3 − i∞ for meridional disturbances and the alternate distribution of c for
torsional and meridional disturbances are shown in § 7. Some remarks are presented
in § 8.

2. Formulation
Let G be a function of r , such that G eiα(x−ct)/r is a normal mode for axisymmetric

torsional disturbances to the pipe flow which is parallel to the x-axis and has the
velocity 1 − r2 (0 <r < 1). Pekeris (1948) derived the linearized equation

d2G

dr2
− 1

r

dG

dr
− α2G − iαR(1 − r2 − c)G = 0. (2.1)

As was mentioned in § 1, α ( > 0) is arbitrarily fixed. The boundary conditions are

G(1) = 0,

∣∣∣∣ lim
r→+0

G(r)

r

∣∣∣∣ < ∞. (2.2a, b)

We define the function μ by

μ(R, c; r) = Mκ,1/2

(√
αR e−iπ/4r2

)
with κ =

1

4

[√
αR (1 − c)

eiπ/4
− α2eiπ/4

√
αR

]
. (2.3)

Here M is the first-kind Whittaker function, which is expressed with Kummer’s
confluent hypergeometric function 1F1 as Mκ,1/2(s) = s e−s/2

1F1(1 − κ; 2; s) (see
Buchholz 1969, § 2, for basic properties of Whittaker functions). Then the solution to
(2.1) with (2.2b) (or more restrictively, limr→+0 G/r = 0) is written as G =Aμ(R, c; r)
with an arbitrary constant A. The eigenvalue c is determined by (2.2a); that is

μ(R, c; 1) = 0. (2.4)

The quotient of the first term of κ in (2.3) divided by the second has the absolute
value R|1 − c|/α. If R|1 − c| → ∞, then κ is asymptotically equal to the k defined by

k =

√
αR (1 − c)

4eiπ/4
=

√
αR

4|z| e−i(arg z+π/4).

Here z =1/(1 − c), and from now on, this z will be frequently used for convenience.
In the limit √

R |1 − c| → ∞ and R|1 − c| → ∞, (2.5)

we have |k| → ∞ and μ(R, c; 1) ∼Mk,1/2(4kz), to which asymptotic results of Skovgaard
(1966) are applicable.

3. Asymptotic forms of μ(R, c; 1) in the limit (2.5)
As Pekeris (1948) proved, every eigenvalue c determined by (2.4) satisfies 0 < cr < 1

and ci < 0, in other words, 0 < arg(1 − c) < π/2 and 0 < |1 − c| < sec arg(1 − c).
Therefore, we restrict our attention to this region of c. Consequently, z belongs to
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Figure 1. The sets D1, D2 and � of z and the corresponding sets of c =1 − 1/z. See (3.1) for
the definition of ρ0. The point c0 corresponds to z = ρ0e

−iπ/4; that is c0 = 1 − ρ−1
0 eiπ/4.

one of the following three sets:

D1 =
{
s : −π/2 < arg s < −π/4,

∣∣s − 1
2

∣∣ > 1
2
, |s| < ∞

}
,

D2 =
{
s : −π/4 < arg s < 0,

∣∣s − 1
2

∣∣ > 1
2
, |s| < ∞

}
,

� =
{
s : arg s = −π/4,

∣∣s − 1
2

∣∣ > 1
2
, |s| < ∞

}
.

Figure 1 shows the locations of D1, D2 and � on the z-plane and the corresponding
sets on the c-plane.

For the derivation of asymptotic forms of μ(R, c; 1) in the limit (2.5), it is convenient
to define ξ by

ξ (z) =

{
1
2
z1/2(z − 1)1/2 − 1

2
ln

[
z1/2 + (z − 1)1/2

]
− iπ/4 for z ∈ D1,

1
2
z1/2(z − 1)1/2 − 1

2
ln

[
z1/2 + (z − 1)1/2

]
for z ∈ D2 ∪ �.

Here, and from now on, multi-valued functions should be understood to take their
principal values. Figure 2(a, b) shows ξ (D1) and ξ (D2 ∪ �) on the ξ -plane. Let us
remark on the intersection of the line ξ (�) and the negative imaginary axis in
figure 2(b). It is at ξ = ξ0 := ξ (ρ0e

−iπ/4), where ρ0 ( > 1/
√

2) is a solution of

Re
{(

ρ0e
−iπ/4

)1/2(
ρ0e

−iπ/4 − 1
)1/2 − ln

[(
ρ0e

−iπ/4
)1/2

+
(
ρ0e

−iπ/4 − 1
)1/2]}

= 0. (3.1)

We numerically get

ρ0 ≈ 2.1844, ξ0 ≈ −0.55204 i.

The intersection of the boundary of ξ (D1) and the negative imaginary axis in
figure 2(a) is at ξ = ξ0 − iπ/4.

We now express μ(R, c; 1) asymptotically as follows:
1. Case: z ∈ D1 (0 < arg k < π/4). Noting that z1/2 = (−z)1/2e−iπ/2 and (z − 1)1/2 =

(1 − z)1/2e−iπ/2 hold, ξ is thus rewritten as

ξ = 1
2
z1/2(z − 1)1/2 − 1

2
ln

[
(−z)1/2 + (1 − z)1/2

]
(3.2)
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Figure 2. The range of ξ (grey-coloured regions). (a) ξ (D1); (b) ξ (D2)
with the thick line ξ (�).

(Skovgaard 1966; (4.7) in his work used this form; see also (4.11) in his work with
iπ/4 replaced by −iπ/4); we have

μ(R, c; 1) ∼ 2(−ξ )1/2

(
z

z − 1

)1/4

I1(4kξ ) (3.3)

in the limit (2.5). Here I1 denotes the first-kind modified Bessel function of the first
order. Skovgaard (1966, p. 75, line 6) left the factor ei[π+arg(z−1)]/4 in his c1(v, m), which
should have been independent of z, and thus his asymptotic form (4.29) of Mv/4,m(vz)
contained |z − 1|−1/4 instead of (z − 1)−1/4. With the correction of this, we get (3.3),
which has been verified numerically.

2. Case: z ∈ D2 (−π/4 < arg k < 0) and Im ξ < 0. Using the Airy function Ai, we
have

μ(R, c; 1) ∼ 27/631/6
√

π k1/6ξ 1/6

(
z

z − 1

)1/4

×
[

− eiπk−kkk

Γ (1 + k)
Ai((6k)2/3ξ 2/3) +

eiπ/6+kk−k

Γ (1 − k)
Ai

(
(6k)2/3ξ 2/3e2iπ/3

)]
(3.4)

in the limit (2.5) (Skovgaard 1966, (5.2)). Since

1

Γ (1 + k)
∼ ek

√
2π kk+1/2

,
1

Γ (1 − k)
=

Γ (k) sin πk

π
∼

√
2

π

kk−1/2 sin πk

ek
(3.5)

(Carlson 1977, §§ 3.8 and 3.9), sin πk ∼ −eiπ(k+1/2)/2 and

Ai(s) + e2iπ/3Ai
(
se2iπ/3

)
+ e−2iπ/3Ai

(
se−2iπ/3

)
= 0 for s ∈ �

(Abramowitz & Stegun 1964, (10.4.7)), we can rewrite (3.4) in the form

μ(R, c; 1) ∼ 22/331/6ξ 1/6eiπ(k−2/3)

k1/3

(
z

z − 1

)1/4

Ai
(
(6k)2/3ξ 2/3e−2iπ/3

)
(3.6)
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in the limit (2.5). Note that (3.6) remains valid even if z → 1 (i.e. c → 0). Indeed,

ξ = 1
3
(z − 1)3/2[1 + O(z − 1)] (3.7)

as z → 1 in D2 (Skovgaard 1966, (3.13)), and thus ξ 1/6 cancels (z − 1)1/4 in (3.6).
3. Case: z ∈ � (arg k = 0) and Im ξ < 0. The asymptotic forms (3.4) and (3.5) remain

valid, while sin πk � −eiπ(k+1/2)/2. Since |Ai(s)| → 0 as |s| → ∞ with | arg s| < π/3 and
|Ai(s)| → ∞ as |s| → ∞ with π/3 < | arg s| < π (Abramowitz & Stegun 1964, (10.4.59)),
the first (resp. second) term inside the square brackets in (3.4) is dominant over the
other if arg ξ < −π/2 (resp. arg ξ > −π/2). It is not difficult to see that the conditions
arg ξ � −π/2 on ξ (�) are equivalent to |z| � ρ0 on �. Therefore,

μ(R, c; 1) ∼ −22/331/6ξ 1/6eiπk

k1/3

(
z

z − 1

)1/4

Ai
(
(6k)2/3ξ 2/3

)
if |z| <ρ0, (3.8a)

μ(R, c; 1) ∼ 25/331/6ξ 1/6eiπ/6

k1/3
(sin πk)

(
z

z − 1

)1/4

Ai
(
(6k)2/3ξ 2/3e2iπ/3

)
if |z| >ρ0,

(3.8b)

in the limit (2.5). If |z| = ρ0 (i.e. ξ = ξ0), then both terms inside the square brackets
in (3.4) have absolute values of the same order, and thus μ(R, c; 1) is asymptotically
equal to the sum of the right sides of (3.8a, b).

4. Case: z ∈ D2 ∪ � and Im ξ � 0. This case is only for a neighbourhood of
z = e−iπ/4/

√
2 (i.e. c = − i), which corresponds to the end point of ξ (�) in figure 2(b).

The validity of (3.4) in D2 ∪ �, (3.6) in D2 and (3.8a) in � is retained if ξ 1/6 and ξ 2/3

are replaced by ξ 1/6e−iπ/3 and −ξ 2/3e−iπ/3, respectively. However, the case Im ξ � 0
does not have influence on the results of this paper.

4. Y-shaped structure of c

The zeros of the right sides of (3.3), (3.6) and (3.8b) approximately determine c of
(2.4) in the limit (2.5) and, as will be seen next, correspond to mean, wall and centre
modes, respectively. The right side of (3.8a) has no zero.

All zeros of I1 and Ai are located on the imaginary axis and the negative real
axis, respectively (Abramowitz & Stegun 1964, §§ 9.5, 9.6 and 10.4). Taking the
regions of k and ξ into account, we deduce that arg(kξ ) = −π/2 (which leads to
arg(k2/3ξ 2/3e−2iπ/3) = −π) is necessarily satisfied by all z that make the right side of
(3.3) or (3.6) vanish. It leads to

arg
{

z1/2(z − 1)1/2 − ln
[
z1/2 + (z − 1)1/2

]
− i

π

2

}
− arg z +

π

4
= 0 for z ∈ D1, (4.1a)

arg
{
z1/2(z − 1)1/2 − ln

[
z1/2 + (z − 1)1/2

]}
− arg z +

π

4
= 0 for z ∈ D2. (4.1b)

Moreover, we add the condition

|z| > ρ0 for z ∈ �, (4.2)

which makes (3.8b) valid. By numerically solving (4.1a, b) and adding the straight line
segment given by (4.2), arg(1 − c) = π/4 with |1 − c| <ρ−1

0 , we obtain the Y-shaped
contour shown in figure 3, on which discrete eigenvalues are approximately located.
The eigenvalues computed by Schmid & Henningson (1994 (table 1, n= 0), 2001
(p. 506, n= 0)) are shown in figure 3, too; most are on or near the Y-shaped contour.
Although some of their eigenvalues are off the leftward branch of the contour,
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Figure 3. The Y-shaped contour obtained from (4.1a, b) and (4.2), with eigenvalues
computed by Schmid & Henningson (1994, 2001) for R = 3000 (�) and R = 2 000 (�)
when α = 1.

they are not of torsional disturbances but of meridional disturbances (see Corcos &
Sellars 1959, § 9; Burridge & Drazin 1969, (14) and (15)). The downward branch of
the contour is given by (4.1a) while the leftward branch by (4.1b). They both look
straight at first sight, but in fact neither is straight. The three branches meet at a
point c = c0 with

c0 = 1 − ρ−1
0 eiπ/4 ≈ 0.67629 − 0.32371 i,

which was shown in figure 1. Indeed, when arg z → −π/4 in D1 or D2, both of (4.1a, b)
become equivalent to (3.1) with ρ0 = |z|.

Since (4.1a, b) and (4.2) do not contain α or R but contain only z, the Y-shaped
contour in figure 3 is independent of α and R. As will be seen in §§ 5 and 6, the
value of αR determines the approximate location of each individual eigenvalue on
the contour.

5. Distribution of c for mean modes
The phase velocity cr ≈ 2/3 of mean modes was obtained in numerical calculations

of the researchers cited in § 1. In the case of c of (2.4), there are several ways to derive
c → 2/3 − i∞ analytically. One is the way in which the result of Pekeris (1948, (20)
and (21)) is used. Second is the method of Burridge & Drazin (1969, (10)–(13)). Let
us prove rigorously the following theorem by a third method:

Theorem 5.1. Let R > 0 be an arbitrarily fixed number, which is not required to be
large. Then there exist sequences of c of (2.4) such that ci → −∞. For all these sequences,
cr → 2/3 holds.

Proof. The limit ci → −∞ with fixed R means (2.5) and z → 0. Noting that z =0 is
accessible only in D1, we first prove the theorem for c =1−1/z with z ∈ D1 satisfying
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I1(4kξ ) = 0 i.e. J1(4kξeiπ/2) = 0 (refer to (3.3)). The error in (3.3) will be discussed in
the latter part of this proof.

We denote the absolute value and the argument of the solution z in (4.1a) by ρ and
σ , respectively. Let us show that σ → −π/2 and dσ/dρ → 1/3 as ρ → +0. For z ∈ D1

with |z| small enough, (3.2) is written as

ξ

z1/2e−iπ/2
= 1

2
(1 − z)1/2 + 1

2

ln
[
(−z)1/2 + (1 − z)1/2

]
(−z)1/2

= 1 − z

6
+ O(z2). (5.1)

It leads to

arg ξ = 1
2
arg z + arg

[
1 − z

6
+ O(z2)

]
− π

2
.

The definition of k gives arg k = − arg z − π/4. Therefore, from (4.1a), that is
arg(kξ ) = −π/2 with z = ρeiσ , we have

σ = 2 arg

[
1 − ρeiσ

6
+ O(ρ2)

]
− π

2
. (5.2)

Imagine the two surfaces τ = 2 arg[1−ρeiσ /6+O(ρ2)] and τ = σ +π/2 in the (ρ, σ, τ )
space, and think about their intersection. Then, since arg[1 − ρeiσ /6 + O(ρ2)] → +0
uniformly in σ ∈ (−π/2, −π/4) as ρ → +0, we see that (5.2) has a solution σ for an
arbitrarily small ρ such that σ → −π/2 + 0 as ρ → +0. Furthermore, applying the
implicit function theorem to (5.2) and noting that arg ≡ Im ln, we have

lim
ρ→+0

dσ

dρ
= lim

ρ→+0

2 Im (∂/∂ρ) ln(1 − ρeiσ /6)

1 − 2 Im (∂/∂σ ) ln(1 − ρeiσ /6)
= lim

σ→−π/2
2 Im

(
−eiσ

6

)
= 1

3
.

From the limits σ → −π/2 and dσ/dρ → 1/3, we can verify that ρeiσ with ρ small
enough is really located in D1, that is in the region between the arc of |z − 1/2| = 1/2
(or equivalently |z| = cos arg z) and the negative imaginary axis on the z-plane. Those
limits yield

1 − 1

ρeiσ
= 1 − cos σ

ρ
+ i

sin σ

ρ
→ 2

3
− i∞ as ρ → +0. (5.3)

We have ξ = O(z1/2) in D1 as z → 0 (refer to (5.1)), while k = O(z−1). This means that
|kξ | → ∞ as z → 0. Hence we can define sequences {ρn : ρn > 0, limn′→∞ ρn′ =0} and
{σn} with n ∈ � large enough such that z = ρne

iσn ∈ {ρeiσ } satisfies 4kξ = j1,ne
−iπ/2,

for which I1(4kξ ) = 0. Here j1,n denotes the nth zero of the Bessel function J1. It
follows from (5.3) that 1 − (ρne

iσn)−1 → 2/3 − i∞ as n → ∞. Except this sequence and
its subsequences, there exists no sequence of c such that ci → −∞.

As we saw, the terms 1 − z/6 in (5.1) are crucial for deriving the limit c → 2/3 − i∞
from I1(4kξ ) = 0. In fact, the same limit is deduced even from

I1

(
4kz1/2e−iπ/2

[
1 −

(
1
6

+ iβ
)
z + o(z)

])
= 0 (5.4)

with any fixed β ∈ �. According to Skovgaard (1966, (5.6) and (4.26) with (4.14),
(4.18) and (4.36)), a more detailed form of (3.3) is

μ(R, c; 1) = Mκ,1/2(4κz∗) = 2(−ξ∗)
1/2

(
z∗

z∗ − 1

)1/4

Σ

with

Σ =

(
1 +

A2

|κ |2 +
A4

|κ |4 + · · ·
)

I1(4κξ∗) +
1

|κ |

(
B0 +

B2

|κ |2 +
B4

|κ |4 + · · ·
)

I2(4κξ∗).
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n 1 − (ρne
iσn )−1 cSH

12 0.6731–0.4526 i 0.672883–0.453187 i
13 0.6717–0.5416 i 0.671515–0.542212 i
14 0.6706–0.6364 i 0.670474–0.636976 i
15 0.6698–0.7371 i 0.669683–0.737636 i
16 0.6692–0.8438 i 0.669078–0.844317 i
17 0.6687–0.9567 i 0.668611–0.957120 i

Table 1. Several values of 1 − (ρne
iσn )−1 for αR = 3000 and the corresponding eigenvalues

cSH of Schmid & Henningson (1994).

Here z∗ = kz/κ = z/(1 − iαz/R) ∈ D1, ξ∗ = ξ (z∗), and A2, A4, . . .; B0, B2, B4 . . . are
functions of z∗ and ei arg κ such that, for λ ∈ �, A4λ−2 =O(ξ 2

∗ ), A4λ = O(ξ 4
∗ ),

B4(λ−1) = O(ξ 3
∗ ) and B4λ−2 = O(ξ∗) as ξ∗ → 0. Noting (d/ds)I1(s) = I2(s) + I1(s)/s and

(d/ds)I2(s) = I1(s) − 2I2(s)/s, we can write

Σ =

(
1 +

a2

|κ |2 +
a4

|κ |4 + · · ·
)

I1

(
4κξ∗ +

1

|κ |

(
B0 +

b2

|κ |2 +
b4

|κ |4 + · · ·
))

,

where a2, a4, . . . ; b2, b4, . . . are determined with A2, A4, . . .; B0, B2, B4 . . .; and ei arg κξ∗.
Since

κξ∗ = κz1/2
∗ e−iπ/2

[
1 − z∗

6
+ O(z2

∗)
]

= kz1/2e−iπ/2

[
1 − z

6
− iαz

2R
+ O(z2)

]
,

|κ |−1 = O(k−1) = O(z) and B0 = O(z3/2
∗ ) = O(z3/2), an equality in the form (5.4) follows

from Σ = 0. Therefore, the error in (3.3) does not have influence on the limit c →
2/3 − i∞. The proof is complete.

Henceforth, to the end of § 6, R is assumed to be so large that (3.3), (3.6) and (3.8b)
have negligible errors except in the neighbourhoods of the boundaries of D1, D2 and
�, respectively, while |ci | is not required to be large.

We continue to use the above-defined ρ, σ , ρn and σn; that is ρeiσ ∈ D1 is a solution
of (4.1a); {ρne

iσn} ⊂ {ρeiσ }; and

|ξ (ρne
iσn)|

ρn

=
j1,n√
αR

. (5.5)

Table 1 shows several values of 1 − (ρne
iσn)−1 for αR =3000 and the corresponding

eigenvalues cSH computed by Schmid & Henningson (1994, table 1, n=0). Their
agreement in real and imaginary parts is so good that the differences are of order
10−4. It is expected that 1 − (ρne

iσn)−1 is closer to the true value of c for larger αR

or n.
Let us see how each c moves nearly on the downward branch of the Y-shaped

contour in figure 3 when R becomes still larger. For this, note that c is determined
from n and αR through the following process:

(i) The integer n is fixed so large that

j1,n√
αR

�
|ξ0 − iπ/4|

ρ0

≈ 0.61228 (5.6)

(see § 8.2). For example n � 11 for αR =3000, and n � 9 for αR = 2000.
(ii) The value of |ξ (ρne

iσn)|/ρn is determined by (5.5).
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m 1 − (ρ̂meiσ̂m )−1 cSH

1 0.2185–0.1207 i 0.21843581–0.121310028 i
2 0.3763–0.1998 i 0.3762424–0.2004630 i
3 0.5021–0.2567 i 0.502037–0.257316 i
4 0.6111–0.3004 i 0.61086–0.301052 i

Table 2. Several values of 1 − (ρ̂meiσ̂m )−1 for αR = 3000 and the corresponding eigenvalues
cSH of Schmid & Henningson (1994).
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2

|ξ(ρeiσ)|/ρ

|ξ0–iπ/4|/ρ0

1/ρ0

1/ρ

Figure 4. The relation between 1/ρ and |ξ (ρeiσ )|/ρ.

(iii) The value of 1/ρn is given by figure 4, which shows the relation between 1/ρ

and |ξ (ρeiσ )|/ρ.
(iv) The approximate location of c on the downward branch of the Y-shaped

contour in figure 3 is obtained from |c − 1| ∼ 1/ρn.
Therefore, if R becomes larger with n fixed, then 1/ρn becomes smaller, and the
location of c goes up towards the bifurcation point c0.

6. Distribution of c for wall and centre modes
6.1. Wall modes

Let ρ̂ and σ̂ be the absolute value and the argument of the solution z ∈ D2 in
(4.1b), that is arg(kξ ) = −π/2. In addition, denoting the mth negative zero of Ai by
am (for its value, see Abramowitz & Stegun 1964, table 10.13), we define ρ̂m and σ̂m

by {ρ̂meiσ̂m} ⊂ {ρ̂eiσ̂ } and

|ξ (ρ̂meiσ̂m)|
ρ̂m

=
2|am|3/2

3
√

αR
. (6.1)

Then z = ρ̂meiσ̂m satisfies 6kξ = |am|3/2e−iπ/2, for which the right side of (3.6) vanishes.
Table 2 shows several values of 1 − (ρ̂meiσ̂m)−1 for αR = 3000 and the corresponding
eigenvalues cSH computed by Schmid & Henningson (1994, table 1, n= 0).

The location of c for wall modes is obtained from m and αR in the following way:
(i) The integer m � 1 is fixed so that

2|am|3/2

3
√

αR
�

|ξ0|
ρ0

≈ 0.25272 (6.2)

is satisfied. For example 1 � m � 4 for αR = 3000 and 1 � m � 3 for αR = 2000. The
largest m for given αR means the number of wall modes.
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Figure 5. The relation between 1/ρ̂ and |ξ (ρ̂eiσ̂ )|/ρ̂.

(ii) The value of |ξ (ρ̂meiσ̂m)|/ρ̂m is determined by (6.1).
(iii) The value of 1/ρ̂m is given by figure 5, which shows the relation between 1/ρ̂

and |ξ (ρ̂eiσ̂ )|/ρ̂.
(iv) The approximate location of c on the leftward branch of the Y-shaped contour

in figure 3 is obtained from |c − 1| ∼ 1/ρ̂m.
Therefore, if R becomes larger with m fixed, then 1/ρ̂m becomes larger, and the
location of c moves towards the origin.

Particularly, in the case in which c is close to the origin, that is z is close to unity,
(3.7) with k ∼

√
αR e−iπ/4/4 yields

|am|3/2e−iπ/2 = 6kξ |z=ρ̂m exp(iσ̂m) ∼
√

αR e−iπ/4

2

(
ρ̂meiσ̂m − 1

)3/2
.

It leads to

c ∼ 1 −
(
ρ̂meiσ̂m

)−1 ∼ ρ̂meiσ̂m − 1 ∼ 22/3|am|(αR)−1/3e−iπ/6.

This is an already-known fact about wall modes (Burridge & Drazin 1969, in which
the minus sign of zq in either (14) or (15) should be removed).

6.2. Centre modes

Because of the factor sin πk in (3.8b), the distribution of c for centre modes is
approximately given by k ∈ � if k is large. If k is not large, that is c close to unity,
we need another asymptotic form valid for z ∈ D1 ∪ D2 ∪ �:

μ(R, c; 1) ∼ Γ (k) sin πk

π
(4kz)−ke2kz as R → ∞ with

√
R (1 − c) fixed. (6.3)

This follows from an asymptotic expansion of a confluent hypergeometric function for
a large-modulus variable and fixed parameters (Abramowitz & Stegun 1964, (13.5.1);
Buchholz 1969, § 7.1, (3)), which Pekeris (1948, (42)) also used. The right side of (6.3)
also vanishes for k ∈ �. Consequently,

c ∼ 1 − 4νeiπ/4

√
αR

for every ν ∈ � that satisfies ν �

√
αR

4ρ0

(6.4)

is obtained from k ∼ ν. This form of c is well known, but ν has mostly been written as
ν = 1, 2, 3, . . . without an upper bound. The analytical deduction of the upper bound√

αR/(4ρ0) from (4.2) is new. For example 1 � ν � 6 for αR = 3000, and 1 � ν � 5 for
αR = 2000. It is easy to verify the good agreement of (6.4) with eigenvalues computed
by Schmid & Henningson (1994 (table 1, n= 0), 2001 (p. 506, n= 0)). Clearly, the
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approximate location of c moves towards unity on the rightward straight branch in
figure 3 when R becomes larger with ν fixed.

7. Mean modes for meridional disturbances
For axisymmetric meridional disturbances, complex phase velocities c are given by∫ 1

0

μ(R, c; r)I1(αr) dr = 0 (7.1)

(Pekeris 1948, (17)). They are more complicated than c given by (2.4). Nevertheless,
it is not difficult to investigate analytically their distribution for mean modes.

Theorem 7.1. Theorem 5.1 is also true with c of (7.1).

Let us give an outline of the proof of this theorem. In the same way as (3.3), it
follows from a result of Skovgaard (1966) that

μ(R, c; r) ∼ Mk,1/2(4kzr2) ∼ 2(−ξ̃ )1/2

(
zr2

zr2 − 1

)1/4

I1(4kξ̃ ) with ξ̃ = ξ (zr2)

for z ∈ D1 and r ∈ (0, 1) in the limit (2.5), where the definition of ξ on D1 is
extensionally used for zr2 /∈ D1. This form of μ(R, c; r) is the same as the one Reid &

Ng (2003, (20)) obtained, except a constant factor. Since dξ̃ /dr = z1/2(zr2 − 1)1/2,

I1(4kξ̃ ) =
(d/dr)I0(4kξ̃ )

4kz1/2(zr2 − 1)1/2
, I0(4kξ̃ ) =

(d/dr)I1(4kξ̃ )

4kz1/2(zr2 − 1)1/2
+

I1(4kξ̃ )

4kξ̃
, (7.2)

integration by parts yields∫ 1

0

μ(R, c; r)I1(αr) dr

∼ (−ξ )1/2I0(4kξ )I1(α)

2kz1/4(z − 1)3/4
− 1

2kz1/4

∫ 1

0

I0(4kξ̃ )
d

dr

(−ξ̃ r)1/2I1(αr)

(zr2 − 1)3/4
dr

=
(−ξ )1/2I0(4kξ )I1(α)

2kz1/4(z − 1)3/4
− I1(4kξ )

8k2z3/4(z − 1)1/2
d

dr

(−ξ̃ r)1/2I1(αr)

(zr2 − 1)3/4

∣∣∣∣∣
r=1

+
1

8k2z3/4

∫ 1

0

I1(4kξ̃ )
d

dr

[
1

(zr2 − 1)1/2
d

dr

(−ξ̃ r)1/2I1(αr)

(zr2 − 1)3/4

]
dr

− 1

8k2z1/4

∫ 1

0

I1(4kξ̃ )

ξ̃

d

dr

(−ξ̃ r)1/2I1(αr)

(zr2 − 1)3/4
dr (7.3)

for z ∈ D1 in the limit (2.5). As |k| → ∞ with kz =
√

αR e−iπ/4/4 fixed, we can show
that (7.3) is equal to

−I1(α)

2k

[
I0(4kξ ) − iα

4kz1/2

I0(α)

I1(α)
I1(4kξ ) + O(k−1)I0(4kξ ) + O

(
k−3/2

)
I1(4kξ )

]
by using (−ξ̃ )1/2 = z1/4eiπ/4r1/2[1 + O(k−1)] and (zr2 − 1)1/4 = e−iπ/4[1 + O(k−1)] and
(7.2) again. The factor −α/(4kz1/2) equals 4kz1/2e−iπ/2z/R. Therefore, (7.1) leads to an
equality in the form of (5.4) with I1 replaced by I0, and thus the limit c → 2/3 − i∞ is
deduced in the same way as in the proof of theorem 5.1 by replacing j1,n by j0,n (the
nth zero of J0).
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n 1 − 1/zn cSH

13 0.6723–0.4968 i 0.6736237–0.496799 i
14 0.6711–0.5887 i 0.6717237–0.588886 i
15 0.6702–0.6864 i 0.6708160–0.6864667 i
16 0.6695–0.7901 i 0.67015960–0.7899999 i
17 0.6689–0.8998 i 0.6696446–0.8996122 i

Table 3. Several values of 1 − 1/zn for αR = 3000 and the corresponding eigenvalues cSH of
Schmid & Henningson (1994).

When R is large instead of |ci |, that is |k| → ∞ with |z| and |z|−1 bounded, it also
follows from (7.3) that approximate values of c of (7.1) for mean modes are given
by I0(4kξ ) = 0. Denoting the solution of 4kξ = j0,ne

−iπ/2 by zn, we obtain table 3
for αR = 3000. It shows good agreement with 1 − 1/zn and the corresponding
eigenvalues cSH of Schmid & Henningson (1994, table 1, n= 0). The well-known
interlacing of j1,n and j0,n accounts for the alternate distribution of c for torsional
and meridional disturbances, which was numerically observed by Salwen & Grosch
(1972) and O’Sullivan & Breuer (1994).

8. Concluding remarks
8.1. On asymptotic forms of Mk,1/2(s)

It is obvious that (3.3), (3.6) and (3.8b) have played essential roles in this paper. They
follow from asymptotic forms of Mk,1/2(s) for |k| → ∞ with s/k ∈ � finite, which are
part of the results of Skovgaard (1966). Pekeris (1948, (42)) used an asymptotic form
for |s| → ∞ with k fixed, and we also used it in (6.3). Sexl & Spielberg (1958, (46))
applied an asymptotic form for |k| → ∞ with s fixed (Buchholz 1969, § 7.4, (16)) to
meridional disturbances. In the torsional case, it reads

μ(R, c; 1) ∼ 2

(1 − c)1/2
J1

(√
αR (1 − c)1/2e−iπ/4

)
as |1 − c| → ∞ with R fixed. (8.1)

From this, we cannot deduce the limit cr → 2/3 in theorem 5.1 but only the limit
arg(1 − c) → π/2 as |1 − c| → ∞. In the proof of theorem 5.1, the term −z/6 in (5.1) is
crucial for obtaining cr → 2/3. Taking this into account, we notice that (8.1) has lost
the information of cr → 2/3. Indeed, (8.1) is also derived from (3.3) with ξ ∼ z1/2e−iπ/2,
which follows from (5.1) with O(z) neglected.

8.2. On the sign � in (5.6), (6.2) and (6.4)

The change of the approximate location of c on each branch of the Y-shaped contour
in figure 3 has been explained in §§ 5 and 6. However, the transition of c from the
mean-mode (downward) branch to the centre-mode (rightward) or the wall-mode
(leftward) branch has not been made clear. The reason is that the errors in (3.3),
(3.6) and (3.8b) are not negligible in a neighbourhood (which vanishes as R → ∞) of
the bifurcation point c0. The sign � in (5.6), (6.2) and (6.4) implies this fact. Indeed,
j1,11/

√
3000 ≈ 0.64508 is larger than the right side of (5.6), but 1 − (ρ11e

iσ11 )−1 does
not agree with any of cSH unlike 1 − (ρne

iσn)−1 for n � 12 in table 1.
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